

BOMBA OPERADA POR PRESSÃO P.O.P.

(4" x 4" - DN 100 x 100)

DESCRIÇÃO

A bomba operada por pressão ADCAMat POP é recomendada na transferência de vapor condensado, óleos e outros líquidos não perigosos compatíveis com a construção, para uma elevação ou pressão mais elevada.

Sob certas condições, pode drenar um recipiente fechado sob vácuo ou pressão.

A bomba pode funcionar com vapor, ar comprimido ou outros gases e é fabricada em aço carbono

OPERAÇÃO

O líquido flui por gravidade para dentro da bomba através de uma válvula de retenção de entrada, levantando a bóia. Neste ponto, a válvula de admissão do fluido motriz está fechada enquanto a válvula de ventilação está aberta. À medida que a bóia atinge a sua posição mais alta, a válvula de admissão do fluido motriz abre e a válvula de ventilação fecha, permitindo que o fluido motriz entre no corpo da bomba. A pressão na bomba aumenta apenas o suficiente para superar a contrapressão.

O líquido pressurizado abre a válvula de retenção de saída e a descarga é iniciada. O líquido descarregado pode ser quantificado através de um contador especial, permitindo que a bomba funcione como um medidor de vazão confiável.

Quando a bóia atinge a sua posição inferior, a válvula de admissão do fluido motor fecha e a válvula de ventilação abre permitindo que o líquido encha a bomba mais uma vez, repetindo o ciclo.

PRINCIPAIS CARACTERÍSTICAS

Peças de desgaste em aço inoxidável endurecido.

Molas inconel de alta resistência.

Cabeça de enchimento baixa para minimizar o espaço de instalação.

Sem requisitos elétricos ou problemas de NPSH.

Adequado para ambientes perigosos.

Baixos custos operacionais.

OPÇÕES: Medidor de nível.

Contadores de AVC.

USAR: Para levantar vapores condensados e outros líquidos compatíveis

com a construção.

DISPONÍVEL

MODELOS: POPS – aço carbono.

TAMANHOS: 4"x4"; DN 100 x 100

CONEXÕES: Flange EN 1092-1 PN 16.

Flangeado ASME B16.5 Classe 150. Rosca fêmea ISO 7 Rp (flanges roscados).

Outros sob consulta.

INSTALAÇÃO: Instalação horizontal. Um exemplo é mostrado na Fig. 1. Ver IMI

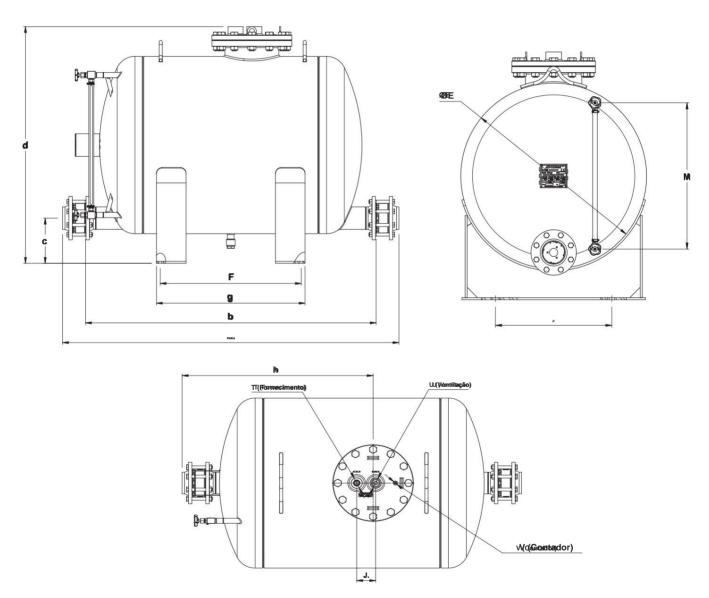
- Instruções de instalação e manutenção.

MÉDIO MOTIVO: Vapor saturado, ar comprimido, nitrogênio e outros gases.

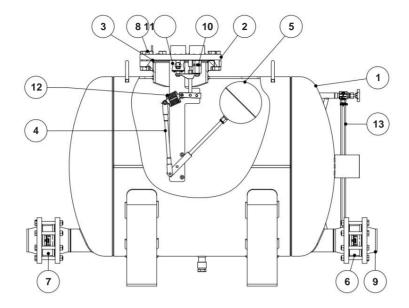
CONDIÇÕES LIMITANTES DO CORPO *						
	PERMITIDO PRESSÃO	RELACIONADO TEMPERATURA				
PN 16	16 barras	50°C				
	14 barras	100°C				
	13 barras	195°C				
	12 barras	250°C				
CLASSE	16 barras	50°C				
150	13 barras	195°C				

Classificação de acordo com EN 1092-1:2018

MARCAÇÃO CE – GRUPO 2				
(PED – Diretiva Europeia)				
PN 16	Categoria			
Todos os tamanhos	4 (marcação CE)			



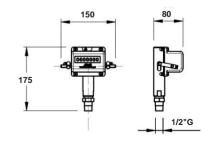
CONDIÇÕES LIMITANTES					
Gravidade específica do líquido	0,8 a 1				
Viscosidade máxima	5ºEngler				
Pressão máxima de entrada motriz	10 barras				
Pressão mínima de entrada motriz	1 barra				
Temperatura máxima de operação	185°C				
Temperatura mínima de operação	20°C				
Descarga da bomba por ciclo	325L				


Limites mais baixos mediante solicitação.

DIMENSÕES (mm)																
TAMANHO	* PARA	b *	С	d	E	F	g	h		J.	М	Т **	** ou	v **	WGT. (kg)	VOL.
4"x4" DN 100 x 100	1705 14	73 229 12	200 900 7	15 753				960	564	95	710	2"	2"	1/2" 56	5 1028	

Com flanges de pescoço soldáveis EN 1092-1. As dimensões podem diferir se forem solicitados flanges ASME B16.5 ou flanges com rosca fêmea ISO 7 Rp. Consultar O manufatureiro.

Por norma, nas versões fabricadas com flanges EN 1092-1 PN 16, estas ligações são roscadas fêmea ISO 7 Rp. Nas versões com ASME Flanges B16.5, essas conexões são NPT com rosca fêmea.


MATERIAIS					
PDV. Não.	DESIGNAÇÃO	MATERIAL			
1	Corpo da bomba	P265GH/1,0425; P235GH/1,0345; S235JR/ 1.0038			
2	Cobrir	GJS-400-15/0.7040			
3	* Junta da tampa	Aço inoxidável / Grafite			
4	mecanismo interno	aço inoxidável			
5	* flutuador	aço inoxidável			
6	* Válvula de retenção de saída	A351 CF8M/1.4408			
7	* Válvula de retenção de entrada	A351 CF8M/1.4408			
8	parafusos	Aço 8.8			
9	Contraflanges	P250GH/1.0460			
10	* Conjunto válvula de admissão/sede	aço inoxidável			
onze	* Conjunto de válvula de escape/sede	aço inoxidável			
12	*Molas	Inconel			
13	** Torneiras medidoras de nível / Vidro	Consulte IS LGC400.10			

Peças de reposição disponíveis. **Opcional.

CONTADOR DE CURSOS

Um contador de cursos pode ser parafusado em uma respectiva conexão roscada fêmea na tampa da bomba. Versões mecânicas e digitais estão disponíveis. A versão mecânica exige que as seguintes condições sejam atendidas.

CONDIÇÕES LIMITANTES *						
Pressão motriz mínima (vapor)	6 barras					
Pressão motriz mínima (ar comprimido e nitrogênio)	5 barras					
Contrapressão mínima do sistema (vapor)	700mbar *					
Contrapressão mínima do sistema (ar comprimido e nitrogênio)	700mbar *					

A válvula de retenção de saída da bomba pode ser fornecida com uma mola mais forte para simular o aumento da contrapressão do sistema. Consulte o fabricante.

A versão digital é composta por sensor e contador remoto de cursos. O dispositivo pode ser feito sob medida para atender às necessidades do cliente e não depende das condições do processo. A unidade padrão é alimentada por bateria, possui um display LCD e conexão de saída opcional sem tensão para monitoramento remoto. Consulte o fabricante.

DIMENSIONAMENT

Para dimensionar com precisão uma bomba operada por pressão, as seguintes informações devem ser fornecidas:

- 1. A carga de condensado (kg/h).
- 2. O meio operacional (vapor, ar comprimido ou outros gases) e sua pressão.
- 3. A elevação total ou contrapressão em bar que a bomba terá que superar. Isto inclui a alteração na elevação do nível do fluido após a bomba (0,0981 bar/m de elevação), mais a pressão na tubulação de retorno, mais a queda de pressão causada pelo atrito da tubulação e outros componentes do sistema.
- 4. Cabeça de enchimento disponível (ver Fig. 1) em mm ou qualquer outra dimensão que permita a sua determinação.

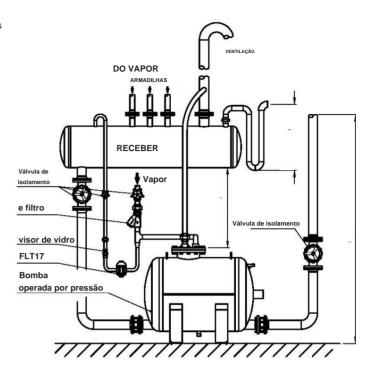


Figura 1

FATOR DE CORREÇÃO DE CAPACIDADE PARA GASES ALÉM DO VAPOR						
% Backpress. contra Imprensa motriz. (BP/MP)	10% 30	% 50% 70%	90%			
Fator de correção	1.04	1.08	1.12	1.18	1,28	

tabela 1

FATORES DE CORREÇÃO DE CAPACIDADE PARA CABEÇAS DE ENCHIMENTO
ALÉM DE 600 mm

	CABEÇA DE ENCHIMENTO (mm)						
TAMANHO DA BOMBA	150	300	600	900			
4"x4" DN 100 x 100	0,7	0,8	1	1.08			

mesa 2

RECEBER

Recomenda-se um receptor para reter temporariamente o líquido e evitar qualquer inundação do equipamento, enquanto a bomba realiza um ciclo de bombeamento. Um comprimento definível de tubo de grande diâmetro pode ser usado.

Os tamanhos de receptor sugeridos são mostrados na Tabela 3.

RECEBER						
TAMANHO DA BOMBA	4"x4" DN 100 x 100					
Tubo Ø x comprimento	406x2000	640x1500	800x1500			

Tabela 3

TAXA DE FLUXO (kg/h) INSTALAÇÃO COM CABEÇA DE ENCHIMENTO DE 600 mm ACIMA DA TAMPA DA BOMBA

PRESSÃO MOTIVA	ELEVAÇÃO TOTAL	4"x4"
(bar)	(bar)	DN 100 x 100
1		13130
1.7		16850
3.5	0.05	21900
5	0,35	24830
7		26880
10		29800
1.7		16630
3.5		20400
5	1	23050
7		25100
10		29800
2,5		13210
3.5		15150
5	1,5	17280
7		19100
10		21410
3.5		11860
4		12300
5	3	12900
7		13740
10		14980
4,5		11700
5	4	11840
7	4	12710
10	1	13760

Tabela 4 (com base na gravidade específica do líquido de 0,9 a 1,0)

Exemplo

Carga condensada8.500kg/hCabeça de enchimento150 mmFluido motorAr comprimidoPressão disponível7 barrasElevação vertical após a10mbomba Pressão da tubulação1,2 barra

de retorno Queda de pressão de fricção da tubulação Cálculos:

Contrapressão total: $1,2 \text{ bar} + (10 \text{ m} \times 0,0981) = 2,181 \text{ bar}.$

Assumindo vapor como meio motriz a uma pressão de 7 bar e uma contrapressão total de 3 bar, então de acordo com a Tabela 4 uma bomba DN 100 x 100, com capacidade de 13740 kg/h, é o tamanho recomendado.

Correção para enchimento da cabeça:

Com cabeça de enchimento de 150 mm o fator de correção da Tabela 2 é 0,7. A capacidade correta é, portanto, 13.740 kg/h x 0,7 = 9.618 kg/h.

Insignificante

Correção para ar como fluido motriz:

A% de contrapressão é 2.181 bar/7 bar = 31%.

O fator de correção da Tabela 1 é 1,08.

A capacidade corrigida é, portanto, $9.618 \text{ kg/hx} \ 1,08 = 10.387,44 \text{ kg/h} \ e$, portanto, uma bomba DN 100 x 100 ainda é o tamanho recomendado.