

REFRIGERADORES DE CONDENSADO QUENTE CHC

DESCRIÇÃO

O HCC é um dispositivo de resfriamento que permite a mistura do condensado quente com um condensado de temperatura mais baixa, evitando marteladas.

A descarga de condensado de linhas de alta pressão (pontos de gotejamento, por exemplo) é frequentemente conectada a linhas de condensado de baixa pressão, com temperatura mais baixa. Esta queda repentina de pressão converterá a diferença de calor sensível entre as duas condições de fluido em calor latente, gerando vapor flash.

O vapor flash tem um volume muito maior que o condensado e, quando misturado com o condensado frio, esfria repentinamente, implodindo e causando marteladas (ruído e vibração).

O HCC evita este fenômeno, pois resfria lentamente o condensado quente que circula dentro de uma serpentina, envolto por condensado frio que circula de acordo com as leis físicas do termossifão.

Elimina marteladas.

Bobina interna resistente à corrosão.

OPÇÕES: Taxas de fluxo maiores.

Projetos especiais sob medida.

USAR: Descarga de condensado a jusante dos purgadores de vapor.

DISPONÍVEL

MODELOS: HCC3 – até 300 kg/h.

HCC10 - até 500 kg/h.

CONEXÕES: Flange EN 1092-1 PN16 e PN40.

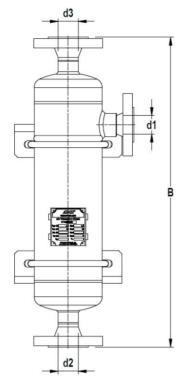
Flange ANSI B16.5 Classe 150 lb ou 300 lb.

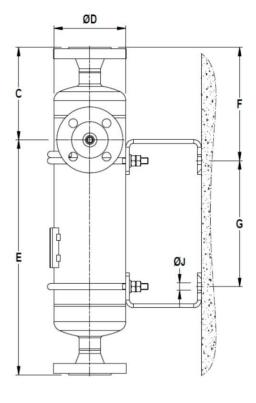
Outros sob consulta.

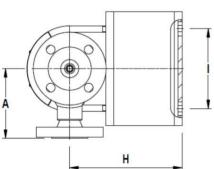
CONSTRUÇÃO: Aço carbono ou aço inoxidável sob consulta.

INSTALAÇÃO: Instalação vertical.

Entrada angular de condensado quente e saída vertical. Entrada inferior de condensado frio e saída vertical.


CONDIÇÕES LIMITANTES DO CORPO *								
Avaliação	Pressão (bar)	temperatura (°C)	Avaliação	Pressão (bar)	temperatura (°C)	Avaliação	Pressão (bar)	temperatura (°C)
PN16	16	cinquents	ANSI 150 libras	16	cinquents		40	cinquents
	14	100		16	100	PN40/	40	100
	13 **	195		13 **	195	ANSI 300 libras	32 **	240
	12	250		12	250		30	300


Classificação de acordo com EN 1092-1:2018. Outras condições sob consulta; ** PMO – Pressão máxima de operação para vapor saturado. Temperatura mínima de funcionamento: -10 °C; Código de projeto: AD-Merkblatt.

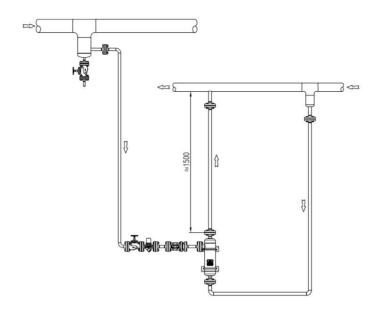


DIMENSÕES

DIMENSÕES APROXIMADAS (mm) *															
MODELO	TAMANHO	PARA	b	С	d	Е	FGH				J.	d1	d2	d3	PESO (kg)
HCC3-20 DN	20 x 25 110		530	155	115 37	5 185		200	177	126	12	vinte	25	25	13,8
HCC3-25 DN	25 x 25 110		530	155	115 37	5 185		200	177	126	12	25	25	25	15,5
HCC10-32 DN	32 x 50 190		715 22	7,5 273 48	7,5 266 2	23 257 28	6				14	32	cinquents	cinquents	62,8
HCC10-40 DN	40 x 50 190		715 22	7,5 273 48	7,5 266 2	23 257 28	6				14	40	dinquents	cinquents	63,1

Valores referem-se à versão flangeada EN1092-1. Para valores certificados e dimensões ANSI, consulte o fabricante.

MATERIAIS							
DESIGNAÇÃO	HCC/S	HCC/SS					
bobina de tubo	AISI316L/1.4404	AISI316L/1.4404					
Cabeças e casca	P265GH/1.0425 P235GH/1.0305	AISI316/1.4401 AISI316L/1.4404					
EM flanges	P250GH/1.0460	AISI316/1.4401					
Flanges ANSI	ASTM A105/1.0432	AISI316/1.4401					
tomadas	ASTM A105/1.0432	AISI316/1.4401					
Apoia	S235JR/1.0038	AISI304/1.4301					


Certificado EN 10204 3.1 disponível mediante solicitação.

VALSTEAMADCA

INSTALAÇÃO TÍPICA

OPERAÇÃO

A descarga do condensado quente do purgador da linha de vapor é conectada ao topo da serpentina HCC (conexão horizontal) que, por sua vez, é circundada pelo condensado frio (Fig. 1), começando assim a ser resfriado enquanto flui para o topo saída (Fig. 2), onde finalmente se mistura com o condensado mais frio (Fig. 3). As bolhas de vapor flash que se formam durante o processo diminuem, até desaparecerem completamente, antes do referido processo de mistura.

O condensado frio é conectado ao fundo do HCC (Fig. 1) e, em contato com a serpentina quente, é aquecido (Fig. 2), iniciando seu processo natural de circulação por termossifão (Fig. 3).

Figura 1 - Sistema frio

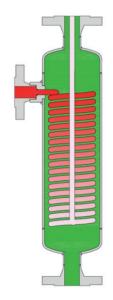


Fig. 2 - Chegada de condensado quente

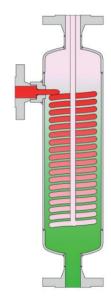


Fig. 3 - Processo termossifão

Outras aplicações: O HCC pode ser projetado especificamente para outras aplicações e diferentes vazões, como: Pequenos trocadores de calor e aquecedores a vapor em geral; Pré-aquecimento da água fria de reposição para um recipiente de condensado ou desaerador; Equalização de temperatura de tanques de alimentação de caldeiras, etc.